Inverse eigenvalue problems for Jacobi matrices
نویسندگان
چکیده
منابع مشابه
A New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems
In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.
متن کاملNumerical Methods for Solving Inverse Eigenvalue Problems for Nonnegative Matrices
Presented are two related numerical methods, one for the inverse eigenvalue problem for nonnegative or stochastic matrices and another for the inverse eigenvalue problem for symmetric nonnegative matrices. The methods are iterative in nature and utilize alternating projection ideas. For the symmetric problem, the main computational component of each iteration is an eigenvalue-eigenvector decomp...
متن کاملGeneralized inverse eigenvalue problems for symmetric arrow-head matrices
In this paper, we first give the representation of the general solution of the following inverse eigenvalue problem (IEP): Given X ∈ Rn×p and a diagonal matrix Λ ∈ Rp×p, find nontrivial real-valued symmetric arrow-head matrices A and B such that AXΛ = BX. We then consider an optimal approximation problem: Given real-valued symmetric arrow-head matrices Ã, B̃ ∈ Rn×n, find (Â, B̂) ∈ SE such that ‖Â...
متن کاملA Solution of Inverse Eigenvalue Problems for Unitary Hessenberg Matrices
Let H ∈ Cn×n be an n × n unitary upper Hessenberg matrix whose subdiagonal elements are all positive. Partition H as H = H11 H12 H21 H22 , (0.1) where H11 is its k×k leading principal submatrix; H22 is the complementary matrix of H11. In this paper, H is constructed uniquely when its eigenvalues and the eigenvalues of b H11 and b H22 are known. Here b H11 and b H22 are rank-one modifications of...
متن کاملOn the nonnegative inverse eigenvalue problem of traditional matrices
In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1976
ISSN: 0024-3795
DOI: 10.1016/0024-3795(76)90064-1